Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Analyse
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MADRITSCH Manfred
Analyse
Commits
92a6c569
Commit
92a6c569
authored
2 years ago
by
Manfred Madritsch
Browse files
Options
Downloads
Patches
Plain Diff
Intégrales de Wallis
parent
963676e1
No related branches found
No related tags found
No related merge requests found
Pipeline
#9931
passed
2 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+40
-0
40 additions, 0 deletions
main.tex
with
40 additions
and
0 deletions
main.tex
+
40
−
0
View file @
92a6c569
...
...
@@ -3661,6 +3661,46 @@ l'intégrale $\int_a^bf(t)\dt$ désigne un nombre réel.
\[
\int
x
^
2
e
^
x
\dx
=(
x
^
2
-
2
x
+
2
)
e
^
x
+
c.
\]
\end{exemple}
\begin{exemple}
\label
{
exo:integrales
_
de
_
wallis
}
Les intégrales de Wallis sont les termes de la suite réelle
$
(
W
_
n
)
_{
n
\in\NN
}$
définie par :
\[
W
_
n
=
\int
_
0
^{
\frac\pi
2
}
\cos
(
x
)
^
n
\dx
.
\]
Les premiers termes de cette suite sont :
\begin{align*}
W
_
0
&
=
\int
_{
0
}^{
\frac\pi
2
}
1
\dx
=
\frac\pi
2;
\\
W
_
1
&
=
\int
_
0
^{
\frac\pi
2
}
\cos
(x)
\dx
=
\left
[ \sin(x)\right]
_
0
^{
\frac\pi
2
}
=1;
\\
W
_
2
&
=
\int
_
0
^{
\frac\pi
2
}
\cos
(x)
^
2
\dx
=
\int
_
0
^{
\frac\pi
2
}
\frac
{
1+
\cos
(2x)
}{
2
}
\dx
=
\frac
12
\left
[x+\frac{\sin(2x)}{2}\right]
_
0
^{
\frac\pi
2
}
=
\frac\pi
4.
\end{align*}
Maintenant cherchons une relation de récurrence. On pose
$
u
=
\cos
(
x
)
^{
n
-
1
}$
et
$
v'
=
\cos
(
x
)
$
. Ainsi
$
u'
=-(
n
-
1
)
\cos
(
x
)
^{
n
-
2
}
\sin
(
x
)
$
et
$
v
=
\sin
(
x
)
$
. Alors par
intégration par partie
\begin{align*}
W
_
n
&
=
\int
_
0
^{
\frac\pi
2
}
\cos
(x)
^{
n-1
}
\cos
(x)
\dx\\
&
=
\left
[\cos(x)^{n-1}\sin(x)\right]
_
0
^{
\frac\pi
2
}
+
\int
_
0
^{
\frac\pi
2
}
(n-1)
\cos
(x)
^{
n-2
}
\sin
(x)
^
2
\dx\\
&
=(n-1)
\int
_
0
^{
\frac\pi
2
}
\cos
(x)
^{
n-2
}
\left
(1-
\cos
(x)
^
2
\right
)
\dx\\
&
=(n-1)W
_{
n-2
}
-(n-1)W
_
n.
\end{align*}
Donc la relation de réciproque est
\[
W
_
n
=
\frac
{
n
-
1
}{
n
}
W
_{
n
-
2
}
.
\]
Alors on peut obtenir une formule pour
$
W
_{
2
p
}$
et
$
W
_{
2
p
+
1
}$
:
\begin{align*}
W
_{
2p
}&
=
\frac
{
2p-1
}{
2p
}
\frac
{
2p-3
}{
2p-2
}
\cdots
\frac
{
1
}{
2
}
W
_
0
=
\frac\pi
2
\prod
_{
k=1
}^{
p
}
\frac
{
2k-1
}{
2k
}
\frac
{
2k
}{
2k
}
=
\frac\pi
2
\frac
{
(2p)!
}{
(2
^
pp!)
^
2
}
=
\frac\pi
2
\frac
{
\binom
{
2p
}{
p
}}{
4
^
p
}
\intertext
{
et
}
W
_{
2p+1
}&
=
\frac
{
2p
}{
2p+1
}
\frac
{
2p-2
}{
2p-1
}
\cdots
\frac
{
2
}{
3
}
W
_
1
=
\prod
_{
k=1
}^
p
\frac
{
2k
}{
2k+1
}
\frac
{
2k
}{
2k
}
=
\frac
{
(2
^
pp!)
^
2
}{
(2p+1)!
}
=
\frac
{
1
}{
2p+1
}
\frac
{
4
^
p
}{
\binom
{
2p
}{
p
}}
.
\end{align*}
\end{exemple}
\subsection
{
Changement de variable
}
\begin{theorem}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment