From e842eaa4d7a16a43fd5df97b330621404c27e9cf Mon Sep 17 00:00:00 2001 From: BOULANGEOT Nathan <nathan.boulangeot@univ-lorraine.fr> Date: Tue, 28 May 2024 12:36:45 +0000 Subject: [PATCH] Delete run.py --- codes/run.py | 58 ---------------------------------------------------- 1 file changed, 58 deletions(-) delete mode 100644 codes/run.py diff --git a/codes/run.py b/codes/run.py deleted file mode 100644 index 0237477..0000000 --- a/codes/run.py +++ /dev/null @@ -1,58 +0,0 @@ -import os -import sys -import ase.io -import numpy as np -from ase import Atoms, Atom -from ase.io import Trajectory -from sklearn.metrics import mean_squared_error -from dscribe.descriptors import SOAP -from scipy.interpolate import UnivariateSpline -from sklearn.gaussian_process import GaussianProcessRegressor -from sklearn.gaussian_process.kernels import RBF -from sklearn.model_selection import train_test_split, learning_curve, validation_curve, GridSearchCV -from joblib import Parallel, delayed -from ase import neighborlist -from sklearn.preprocessing import StandardScaler -from create_descriptor import * -from tool import * -from zopt import * - -if __name__ == '__main__': - #debut de l initialisation - E = -808.18103420 #slab without O - mu = -9.85391418/2 #O2 sur 2 - atomseul='H' #atome deposé - traj='data/final.traj' - data_folder='data' - poscar_file='POSCAR' #slab with no adsorbate - os.chdir('/home/boulang31/Documents/codes/zopt') - train_pos_indices=[1,25,36] - atoms_train,y_train,species=get_train_data(traj,data_folder,train_pos_indices) - xx,yy,zz=pos_to_relax(poscar_file) - print(zz) - params={'species':species,'l_max':2,'n_max':2,'r_cut':7} - desc=create_descriptor(method='soap',params=params,ats=0) - X_train=desc.create(atoms_train,load=True,save_file=data_folder) - - y_mean=np.mean(y_train) - y_train=y_train-y_mean - scaler=StandardScaler() - X_train=scaler.fit_transform(X_train) - - #machine - kernel=1**2 * RBF(length_scale=200,length_scale_bounds=(1/np.sqrt(2*1e-0),1/np.sqrt(2*1e-8))) - GP = GaussianProcessRegressor(kernel=kernel) - title='GP' - parameters = {'alpha':[1e-3,]} - g_search = GridSearchCV(GP, parameters) - g_search.fit(X_train, y_train) - print('best estimator',g_search.best_estimator_.kernel_) - np.save('GP_alpha.npy',g_search.best_estimator_.alpha_) - #recherche mini - #for i in range(len(xx)): - # x_soap,zetap,ind,zlim=searchEminzgrid(x=xx[i],y=yy[i],ind=i,z=17,posDFT=posDFT,atomseul='O') - # x_soap=scaler.transform(x_soap) - # Eprd,Estd=g_search.best_estimator_.predict(x_soap,return_std=True) - # pos_reduc(np.array(zetap),Eprd,Estd,ind,zlim,xx[i],yy[i]) - - Parallel(n_jobs=10)(delayed(run_para)([xx[i],yy[i],zz[i]],i,desc,scaler,g_search) for i in range(len(xx))) \ No newline at end of file -- GitLab